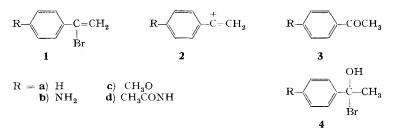
222. Solvolysis of α -Bromo-*p*-aminostyrene

Mesomeric Vinyl Cations, Part IV

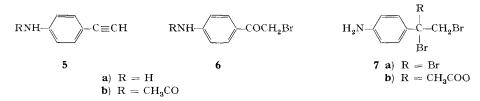
by C. A. Grob and H. R. Pfaendler


Institute of Organic Chemistry, University of Basle

(5. VIII. 71)

Summary. The preparation of α -bromo-p-aminostyrene (1b) and its solvolysis rates and products have been reexamined in detail. In buffered 50 vol % aqueous dioxane between p_H^* 13 and 3 the reaction rate is independent of hydrogen ion concentration. The ratio of the solvolysis products, viz. p-aminoacetophenone (3b) and p-aminophenylacetylene (5a), however, varies with the p_H^* and with the buffer concentration.

These findings confirm the unimolecular $(S_N 1-E1)$ mechanism involving an intermediate vinyl cation. The acid-catalysed hydration mechanism proposed by *Schubert & Barfknecht* is thereby excluded.


 α -Bromostyrenes (1) were the first vinyl halides shown to react by the ionization mechanism involving an intermediate vinyl cation 2 [1]. In 80% ethanol the p-amino, p-methoxy and p-acetylamino derivatives 1b, 1c and 1d reacted 10⁸, 10⁴ and 10³ times, respectively, as fast as α -bromostyrene (1a) itself. The reaction rates were insensitive to the addition of 1 to 5 equivalents of triethylamine. Therefore an alternative mechanism involving acid-catalysed hydration of the vinyl bromides 1 to the tetrahedral intermediates 4 was rejected, notwithstanding the fact that this process also accounts for the formation of acetophenones 3 as major products in weakly basic media.

This view was recently criticized by *Schubert & Barfknecht* [2] who claim to have shown that α -bromo-*p*-aminostyrene (1b) is hydrolysed by acid-catalysed hydration via **4b**. Their conclusion was based on rate studies of a compound assumed to be **1b** in aqueous buffer and perchloric acid solutions.

The large discrepancy between their and our rate data and the resultant confusion in the literature (*cf.* [3]) prompted us to reexamine the preparation of α -bromo-*p*aminostyrene (**1b**) and its solvolysis. In media of low acidity, in which **1b** is present as base, the rate should increase with the hydrogen ion concentration if the acidcatalysed hydration mechanism prevails. On the other hand the rate should be $p_{\rm H}$ -independent under these conditions if solvolysis occurs via the vinyl cation **2b**. In the present study the rates of solvolysis of 1b, and the products obtained¹), were therefore studied as a function of p_{H^2}).

Results. – α -Bromo-p-aminostyrene (**1b**) was prepared as previously described [1] by the addition of HBr to p-aminophenylacetylene (**5a**)³) in glacial acetic acid. Under these conditions, however, the vinyl bromide **1b** was frequently accompanied by large amounts of ω -bromo-p-aminoacetophenone (**6a**). Apparently, in the presence of air HBr is oxidized to bromine, which adds to the vinyl bromide **1b**, yielding the tribromide **7a** or the acetoxydibromide **7b**. Upon contact with water the last two compounds are hydrolysed to **6a**. This view is supported by the fact that **6a** is formed in almost quantitative yield when a solution of **1b** and HBr in acetic acid is treated with oxygen. A further side-product in the addition of HBr to p-aminophenylacetylene (**5a**) in acetic acid is p-aminoacetophenone (**3b**).

However, in dry dimethylformamide HBr adds rapidly to p-aminophenylacetylene (**5a**), yielding pure α -bromo-p-aminostyrene (**1b**). Although stable in solution, both the base **1b** and its hydrobromide decompose rapidly upon isolation. The crystalline salt of **1b** with p-toluenesulfonic acid, however, is stable. Acetylation converts **1b** into p-acetylamino- α -bromostyrene (**1d**), a stable compound also obtained by adding HBr to p-acetylamino-phenylacetylene (**5b**) [1]. The structure of the vinyl bromide **1b** is confirmed by NMR. and UV. spectroscopy (see experimental section).

When 0.1 M solutions of **1b** hydrotosylate were solvolysed in 80% ethanol in the presence of 2.2 equivalents of triethylamine during eight half lives, 53% *p*-amino-acetophenone (**3b**) and 47% *p*-aminophenylacetylene (**5a**) were formed, as determined UV.-spectroscopically. In 50% aqueous dioxane 49% of **3b** and 51% of **5a** resulted. In both cases the products were isolated and identified as the stable N-acetyl derivatives **3d** and **5b**, respectively. The solvolysis of *p*-acetylamino-*a*-bromostyrene (**1d**) in 80% ethanol with 1.2 equivalents of triethylamine yielded 58% *p*-acetylamino-acetophenone (**3d**) and 42% *p*-acetylamino-phenylacetylene (**5b**).

 α -Bromo-p-aminostyrene (1b) gives an instantaneous precipitate of silver bromide with 1 \aleph silver nitrate in 80% ethanol at 20°. The N-acetyl derivative 1d does not react within 5 minutes at 20°; at 70° a precipitate is formed after 5 minutes.

The first-order rate constants for the solvolysis of α -bromo-p-aminostyrene (1b) in 80 vol-% ethanol were determined conductometrically (Table 1). They are in fair agreement with the results of our previous titrimetric measurements [1], the difference

¹) In our earlier work [1] products were not determined quantitatively.

²) A brief summary of this work has appeared [4].

³) The original preparation of this compound has been improved as described in the experimental section.

being due to improved technique and, probably, to a slightly different solvent composition.

temp. (°C)	$k(s^{-1})$	E‡ kcal	S^{\pm} cal/°C
0.0 16.0 20.0 25.0 100.0	$\begin{array}{c} 1.87\times 10^{-4}^{\rm b})\\ 1.26\times 10^{-3}\\ 1.98\times 10^{-3}\\ 3.49\times 10^{-3}^{\rm c})\\ 2.1^{\rm d})\end{array}$	18.9	- 8.8
^b) Titrimetri	deviation from the mean value: 1.2 c value 0.957×10^{-4} [1]. 2 M triethylamine 3.40×10^{-3} . ted.	?%.	

Table 1. First order rate constants for 1b in 80 vol. % ethanol, c = 0.01 M, 0.05 M in triethylamine^a)

The first-order rate constant for 1b in 50 vol-% dioxane-water at 20° was $4.20 \times$ 10⁻³. In 50% dioxane-D₂O it was 3.19×10^{-3} . The ratio $k_{\rm HeO}/k_{\rm DeO}$ corresponds to a solvent isotope effect of 1.3. In water the reaction of 1b is too rapid for convenient measurement (half live at 0° ca. 40 s). The effect of H⁺ concentration on rate was therefore determined in 50 vol-% dioxane-water containing appropriate buffers or hydrochloric acid. The apparent $p_{\rm H}$ value $(p_{\rm H}^{*})$ of each reaction mixture was determined separately. The rate constants between p_H^{*} 3.8 and 13.0 were determined spectroscopically by following the decrease of the UV. maximum of 1b at 290 nm (Fig. 1). Below p_H^{*} 3.0 the UV. maximum of the conjugate acid of 1b at 250 nm (Fig. 2) was used. Since the hydrolysis products of 1b, viz. p-aminoacetophenone (3b) and p-aminophenylacetylene (5a), also absorb at these wavelengths (Fig. 1 and 2), the rate constants (Table 2) (mean value between p_H^* 3 and 13 = 4.2 × 10⁻³ \pm 5% at 20.0°) are not as accurate as the conductometric value (4.20 $\times 10^{-3}~\pm~1\%$). Between p_H^* 3 and 13 the rate constant remains practically unchanged, but decreases sharply below $p_{\rm H}^{*}$ 3, as shown graphically in Fig. 3. At $p_{\rm H}^{*}$ 0.2 the reaction is too slow to be measured.

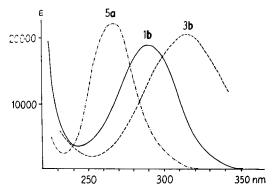


Fig. 1. UV. spectra of α-bromo-p-aminostyrene (1b), p-aminoacetophenone (3b) and p-aminophenylacetylene (5a) in 50% dioxane

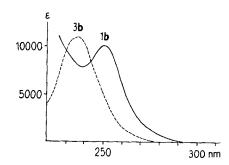
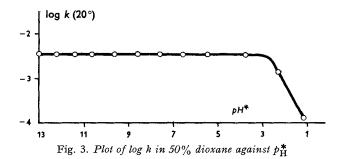



Fig. 2. UV. spectra of the conjugate acids of α -bromo-p-aminostyrene (1b) and p-aminoacetophenone (3b) in 50% dioxane at $p_H 0.2$

Table 2. Dependence of the first-order rate constant for 1b, $c = 5.0 \times 10^{-5}$ M, on p_H^* in 50 vol-% dioxane at 20.0°

₽ #	buffer	$k(s^{-1})$	$p_{\mathbf{H}}^{\mathbf{*}}$	buffer	$k(s^{-1})$
0.2		< 3 × 10 ⁻⁵	8.6	phosphate	4.3×10-3
1.2		$1.5 imes 10^{-4}$	9.6	borate	4.3×10^{-3}
2.3		$1.4 imes10^{-3}$	10.6	borate	4.1×10^{-3}
3.8	citrate	$4.1 imes 10^{-3}$	11.6	borate	$4.1 imes10^{-3}$
5.6	citrate	$4.4 imes 10^{-3}$	12.1	phosphate	$4.4 imes 10^{-3}$
6.6	citrate	$4.1 imes10^{-3}$	13.0	phosphate	4.3×10^{-3}
7.6	citrate	$4.1 imes 10^{-3}$			

The considerably reduced reactivity of the conjugate acid of **1b** permitted rate measurements in 0.01 to $1 \times a$ queous perchloric acid at 50.0° , *i.e.* under the conditions of *Schubert & Barfknecht* [2] (Table 3). In this $p_{\rm H}$ region the rate drops sharply with increasing acidity.

Table 3. Dependence of the first-order rate constant for 1b, $c = 5 \times 10^{-5} M$, in aqueous perchloric acid at 50.0°

<u> </u>			
pН	0.0	1.0	2.0
$\hat{k}(s^{-1})$	3.2×10^{-4}	$2.9 imes 10^{-3}$	$4.3 imes 10^{-2}$

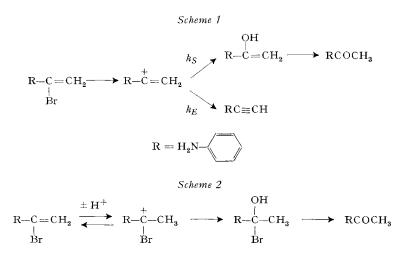

The composition of the products from 1b in 50% dioxane was also determined by UV. spectroscopy as a function of the $p_{\rm H}^*$ (Table 4) and the buffer concentration (Table 5) of the medium. Table 4 shows that the ratio of the acetylene **5a** to the ketone **3b** increases as the p_H^* of the medium is raised. It follows from Table 5 that this ratio also increases at higher buffer concentrations and that an increase in ionic strength due to the addition of the neutral salt NaClO₄ has little effect on the product ratio.

Table 4. Effect of pH^* (buffer concentration 10^{-3} M) on the solvolysis products of 1b ($c = 5 \times 10^{-5}$ M) in 50 vol-% dioxane

			/0			
pH*	3.9	6.3	8.0	8.7	10.7	13.1
buffer	citrate	citrate	citrate	phosphate	borate	phosphate
% ketone 3 b	84	81	75	65	44	15
% acetylene 5a	16	19	25	35	56	85

buffer conc. (molar.)	10-3	$10^{-3}a$	$3.3 imes 10^{-3}$	10-
% ketone 3 b	67	69	31	24
% acetylene 5a	33	31	69	76

Discussion. – The constant solvolysis rate of α -bromo-p-aminostyrene (**1b**) over the $p_{\rm H}^*$ range 13 to 3 (Fig. 3) and the formation of p-aminophenylacetylene (**5a**) besides p-aminoacetophenone (**3b**) confirm the unimolecular (S_N 1-E1) mechanism (scheme 1) previously proposed [1]. At higher hydrogen ion concentrations ($p_{\rm H}^* < 3$) the vinyl bromide **1b** is progressively deactivated by protonation of the amino group, and at $p_{\rm H}^*$ 0.2 practically no further reaction is observed at 20°.

The opposite behaviour would be observed if the acid-catalysed hydration mechanism (scheme 2) were operating, *viz.* a linear increase of the rate with increasing H_3O^+ concentration in media of low acidity where the free base prevails. Furthermore, the ketone **3b** only should be formed by this mechanism. Since this is not the case and since *Schubert & Barfknecht* [2] report a rate constant which at

2064

 p_H 6 is more than 10⁶ times lower than that of α -bromo-p-aminostyrene (1b), it follows that they were investigating a different compound⁴).

The intermediate formation of a vinyl cation according to scheme 1 is supported by other findings. Thus the log k's for the four α -bromostyrenes **1a-1d** [1] correlate linearly with *Brown*'s σ^+ substituent constants with a reaction constant ρ of -6.6, which is indicative of a cationic intermediate. α -Bromo-*p*-aminostyrene (**1b**) also gives rise to an immediate precipitate of silver bromide when treated with silver ion in neutral aqueous alcohol. Far more drastic conditions are required in the case of the N-acetyl derivative **1d**. Furthermore, the solvent isotope effect $k_{\rm H20}/k_{\rm D20}$ of 1.3 for the reaction of **1b** in aqueous dioxane corresponds closely to that for *t*-butyl chloride (1.4) [5]. It is therefore typical for a $S_N 1-E 1$ reaction⁵).

A striking result of the present investigation is the finding that the ratio of the ketone **3b** to the acetylene **5a** formed from **1b** is a function of the $p_{\rm H}^*$ of the medium (Table 4), but that the rate at which they are formed is not. As the $p_{\rm H}^*$ value is raised from 3.9 to 13.1 the relative yield of the acetylene **5a** is increased from 16% to 85%. Therefore acetylene formation by elimination of a proton from the vinyl cation (k_E in scheme 1) is more susceptible to an increase in base strength than ketone formation via the enol (k_S in scheme 1). This observation constitutes a rare case of $p_{\rm H}$ control over product composition in a S_N 1-E1 reaction.

Finally, an increase in buffer concentration from 10^{-3} to 10^{-2} M at a constant $p_{\rm H}^*$ of 8.6 produces an increase in the formation of acetylene **5a** from 33% to 76% (Table 5). This result suggests that the elimination step k_E in scheme 1 is general base-controlled.

This work was supported by the 'Schweizerischer Nationalfonds'.

Experimental Section

M.p.'s were determined on a Kofler Block and are corrected; accuracy below 200°C \pm 1°. B.p.'s are uncorrected. Spectral and gas-chromatic analyses were carried out as described in Part. II [7].

Syntheses. – The first three compounds were synthesized by modified procedures of *Drewsen* [8].

 γ -(p-Nitrophenyl)- α , β -dibromopropionic acid. To a stirred mixture of 48.6 g (0.25 mole) of *p*-nitrocinnamic acid (*Fluka*) in 100 ml glacial acetic acid were added 44 g (0.275 mole) of bromine. After 2 h refluxing, the clear solution was evaporated to dryness in a vacuum rotatory evaporator (v.r.e.). The yellow residue was recrystallized from 200 ml acetic acid to yield pale yellow prisms. After drying, 77.0 g (87%), m.p. 216–217° (Lit. [8]: m.p. 217–218°).

p-Nitrophenylpropiolic acid. To a solution of 70.5 g (0.2 mole) of γ -(*p*-nitrophenyl)- α,β -dibromopropionic acid in 400 ml of abs. *t*-butanol were added 90.0 g (0.8 mole) of potassium *t*-butoxide with efficient stirring at such a rate that the temperature did not rise above 50°. The reaction mixture was stirred at 40° for additional 90 min. After cooling, 100 ml of ethyl acetate, 900 ml of ether and 1000 ml of 1 N HCl were added. After shaking, the aqueous layer was separated and extracted twice with 250 ml of ether-ethyl acetate. The combined extracts were washed twice with 100 ml of water, dried over sodium sulfate and evaporated in a v.r.e., leaving a residue of 35.0 g (75%) crude acid, m.p. 194–198° (Lit. [8]: m.p. 198°).

⁴⁾ Under the conditions employed by these authors, namely aqueous solutions of $p_H 6$ to 3 at 50°, teh vinyl bromide **1b** is instantaneously hydrolysed to **5a** and **3b**.

⁵) The acid-catalysed hydration of phenylacetylene and styrene shows solvent isotope effects of 2 to 3.5 [6].

p-Nitrophenylacetylene. 38.2 g (0.2 mole) of crude p-nitrophenylpropiolic acid were dissolved in 1000 ml water by adding the calculated amount of $KHCO_3$. After filtration the clear solution was vigorously refluxed. Yellow crystals of p-nitrophenylacetylene steam-distilled into the reflux condenser, from which they were removed periodically. After 6 h refluxing, 24.3 g (80%) were collected, m.p. 149–150° (Lit. [8]: m.p. 152°). The product is sensitive to light and should be stored in the dark.

p-Aminophenylacetylene. A suspension of 5.9 g (0.04 mole) of p-nitrophenylacetylene in 20 ml of water and 25 ml of conc. aqueous ammonia was cooled to 0°. 18 g of zinc powder were then slowly added. The stoppered reaction flask was shaken for 2 h in an ice bath and for further 18 h at room temperature. After dilution with 100 ml water the mixture was extracted three times with 100 ml of ether. The combined ether extracts were washed with water, dried over K_2CO_3 and then evaporated to dryness. Recrystallization of the yellow residue from heptane (under nitrogen) yielded 3.3 g (70%) white needles, m. p. 99-100° (Lit. [9]: m. p. 100°). The amine is sensitive to air. UV. spectrum in ethanol: λ_{max} 268 nm (ε = 22,000); in aqueous perchloric acid: λ_{max} 232 nm (ε = 14,000) and 242 nm (ε = 12,000). IR. spectrum in CCl₄ (cm⁻¹): 3500, 3400, 1620 (NH₂); 2110 (C \equiv C); 1520 (aryl). NMR. spectrum in CDCl₃ (ppm): 3.0 (1 H, s) C \equiv CH; 3.8 (2 H, broad s) NH₂; 6.5-7.4 (4 H, m) aryl-H.

 α -Bromo-p-aminostyrene hydro-p-toluenesulfonate (**1b**-HOTs). In a 250 ml separatory funnel 1.17 g (10 mmoles) of p-aminophenylacetylene were dissolved with swirling in 50 ml of a 5% solution of dry HBr in dry dimethylformamide. After standing at 25° for 45 min 100 ml of ether were added and the funnel cooled in an ice bath. The ether solution was then extracted with 100 ml of ice-cooled aqueous $1 \times$ KHCO₃ and twice with 50 ml of water. The aqueous extracts were washed with two fresh portions of ether. The combined ether extracts were dried for 5 min over anhydrous K_2CO_3 and filtered. The filtrate was then slowly added to a solution of 1.72 g (10 mmoles) of p-toluenesulfonic acid monohydrate in 50 ml of dry ether. The resulting pale yellow microcrystal-line precipitate was filtered and washed with 50 ml of dry ether. The crude salt, 3.1 g (84%), was twice recrystallized by dissolving in dry methanol and adding dry ether until crystals appeared. Yield 1.55 g (42%) of rectangular platelets, m.p. 113-115° (dec.).

The unstable free base **1b** was obtained by adding ice-cooled aqueous $1 \times \text{KHCO}_3$ to a suspension of the salt in chloroform, ether or benzene and immediate extraction. – UV. spectrum of the free base in ethanol: λ_{max} 288 nm ($\varepsilon = 19,000$); in aqueous perchloric acid: λ_{max} 250 nm ($\varepsilon = 10,000$). IR. spectrum of **1b** in CHCl₃ (cm⁻¹): 3680, 3410, 1620 (NH₂); 1670 (C=C); 1600 (arom.). – NMR. spectrum of **1b** in CDCl₃ (ppm): 3.4 (2H, broad s) NH₂; 5.6 (1H, d, J = 2.5) C=CH; 5.9) 1H, d, J = 2.5) C=CH; 6.5 (2H, m) aryl-H; 7.4 (2H, m) aryl-H.

 $\begin{array}{cccc} C_{15}H_{16}BrO_3NS & Calc. C 48.66 & H \ 4.36 & Br \ 21.58 & N \ 3.78 & S \ 8.66\% \\ (370.27) & Found \ ,, \ 48.90 & ,, \ 4.56 & ,, \ 21.54 & ,, \ 3.52 & ,, \ 8.65\% \end{array}$

 α -Bromo-p-acetylaminostyrene (1d). – a) From 1b hydro-p-toluenesulfonate. 370 mg (1 mmole) of the salt were converted to the free base by adding aqueous KHCO₃ and extracting with 20 ml of benzene as described above. The benzene solution was dried over K₂CO₃, concentrated, and 200 mg (1.7 mmoles) of acetic anhydride were added. After one hour at 25° the solution was evaporated (v.r.e.). The residue was crystallized from aqueous ethanol, yielding 190 mg (79%) of colourless needles, m.p. 122–123° (Lit. [1]: m.p. 135–137° from nitrobenzene). – UV. spectrum in ethanol: λ_{max} 277 nm ($\varepsilon = 21,000$). NMR. spectrum in (CD₃)₂SO (ppm): 2.1 (3H, s) CH₃; 5.7 (1H, d, J = 3) C=CH; 6.3 (1H, d, J = 3) C=CH; 7.6 (4H, s) aryl-H; 9.2 (1H, s) NH.

b) From p-acetylamino-phenylacetylene (**5b**). 159 mg (1 mmole) **5b** were dissolved in 5 ml of a 5% solution of HBr in glacial acetic acid. After 30 min the crystalline precipitate was filtered off and recrystallized from aqueous ethanol. Yield 150 mg (60%) of white needles, m.p. $119-122^{\circ}$ (dec.); after further recrystallization, m.p. $122-123^{\circ}$ (dec.). Spectra identical with those of the substance described under a.

p-Acetylamino-phenylacetylene (**5 b**). 585 mg (5 mmoles) of p-aminophenylacetylene in 10 ml dry benzene were treated with 1.0 g (8.5 mmoles) of acetic anhydride. After 2 h at 25° the mixture was evaporated (v.r.e.) and the residue crystallized from benzene-cyclohexane. Yield 700 mg (88%) of prisms, m.p. 120–122°; after recrystallization m.p. 122–123° (Lit. [1]: m.p. 128–129°). – UV. spectrum in ethanol: λ_{max} 268 nm ($\varepsilon = 28,000$). NMR. spectrum in CDCl₃ (ppm): 2.2 (3 H, s) CH₃; 3.1 (1 H, s) C \equiv CH; 7.5 (4 H, s) aryl-H; 7.9 (1 H, s) NH.

Hydrobromide of ω -bromo-p-aminoacetophenone (**6a**). Oxygen was bubbled for 20 min through a solution of 370 mg (1 mmole) of α -bromo-p-aminostyrene (**1b**) hydro-p-toluenesulfonate in 40 ml of acetic acid containing 1% HBr. 2 ml of 48% aqueous HBr were then added and the reaction mixture evaporated to dryness in a v.r.e. The crystalline residue was taken up in benzene and aqueous 1N KHCO₃. The benzene layer was separated and dried over K₂CO₃. After filtration an excess of HBr in acetic acid was added. Evaporation in a v.r.e. and recrystallization of the residue from methanol-ether yielded the HBr salt of **6a** as yellow needles which decompose without melting.

C₈H₉BrNO (294.90) Calc. C 32.56 H 3.08 N 4.75% Found C 32.80 H 3.15 N 4.84%

The free base **6a** was obtained by treating the hydrobromide with aqueous KHCO_3 and extracting with chloroform. – IR. spectrum in CHCl_3 (cm⁻¹): 3510, 3420, 1620 (NH₂); 1665 (C=O); 1600 (aryl). NMR. spectrum in CDCl_3 (ppm): 4.3 (2H, s) CH_2 ; 4.3 (2H, broad s) NH_2 ; 6.6 (2H, d) aryl-H; 7.8 (2H, d) aryl-H.

N-Acetyl derivative of **6a**. To the dried benzene solution of **6a** acetic anhydride was added. After 15 hrs. at 25°, evaporation to dryness and crystallization from 2-propanol, pure ω -bromo-*p*-acetylamino-acetophenone (**6b**) was obtained in 70% yield; m.p. 187–188° (dec.) (Lit. [10]: m.p. 190–193° (dec.). The substance was identified by comparison of the m.p., UV., IR. and NMR. spectra with those of authentic **6b** obtained by bromination of *p*-acetylamino-acetophenone (**1d**) in dry glacial acetic acid, following the procedure of *Raiford & Davis* [10]. – IR. spectrum (KBr) (cm⁻¹): 3310, 3190, 3100 (NH); 1690 (amide); 1670 (ketone). UV. spectrum in ethanol: λ_{max} 297 nm (ε = 18,000). NMR. spectrum in (CD₃)₂SO (ppm): 2.1 (3H, *s*) CH₃; 4.8 (2H, *s*) CH₂; 7.9 (4H, *m*) aryl-H; 10.4 (1H, *s*) NH.

p-Acetylaminoacetophenone (1d) was prepared from commercial p-aminoacetophenone (Fluka) with acetic anhydride. From ethanol needles, m.p. 170–171° (Lit. [1]: m.p. 171°). UV. spectrum in ethanol: λ_{max} 285 nm ($\varepsilon = 20,000$). IR. spectrum in CHCl₃ (cm⁻¹): 1700 (amide); 1765 (ketone). NMR. spectrum in (CD₃)₂SO (ppm): 2.1 (3H, s) CH₃CONH; 2.5 (3H, s) COCH₃; 7.8 (4H, m) aryl-H; 10.2 (1H, s) NH.

Preparative Solvolyses. – α -Bromo-p-aminostyrene (1b).

a) In 50 vol % dioxane. 185 mg (0.5 mmole) of **1b** hydrotosylate in 5 ml of a 0.22 M triethylamine solution in 50% dioxane were reacted at 25° for 30 min. The UV.-spectroscopic method described below indicated the presence of 49% p-aminoacetophenone (**3b**) and 51% p-aminophenylacetylene (**5a**). After adding 30 ml of 0.1 N aqueous NaOH the reaction mixture was extracted with 30 ml of ether. After washing with water and drying over K_2CO_3 the ether was evaporated and the residue acetylated with 0.5 ml of acetic anhydride in a small amount of dry ether. After standing at 25° for 15 h the solution was evaporated by v.r.e. The residue (74 mg) was separated by preparative thin-layer chromatography on 8 g silica gel, using benzene-ethyl acetate (1:1) as solvent. The two zones (detected under an UV. lamp) were separated mechanically and extracted with methanol. The first zone yielded 30 mg of p-acetylamino-phenylacetylene (**5b**), m. p. 122-123° from benzene-cyclohexane. The second zone yielded 33 mg of p-acetylamino-acetophenone (**3d**), m. p. 170-171° from ethanol. Both compounds were identified by comparison with authentic samples [1].

b) In 80 vol. % ethanol. Analogous reaction of 185 mg 1b hydrotosylate in 5 ml 80% ethanol (0.22 M in triethylamine) led to 53% ketone **3b** and 47% acetylene **5a**. Preparative thin-layer chromatography of the acetylated product yielded 26 mg **5b** and 32 mg **3d**. No further product was detectable by thin-layer chromatography or by NMR. spectroscopy.

 α -Bromo-p-acetylaminostyrene (1d) in 80% ethanol. 120 mg (0.5 mmole) of 1d were heated in 5 ml of 80% ethanol (0.12 m in triethylamine) to 135° for 15 h. UV. spectroscopy revealed the presence of 58% *p*-acetylamino-acetophenone (3d) and 42% *p*-acetylamino-phenylacetylene (5b). After working up and separation by preparative thin-layer chromatography as described above, 22 mg of 5b and 39 mg of 3d were isolated and identified by comparison with authentic samples.

Kinetic measurements. -- The rate constants of 1b in 80 vol-% ethanol and 50 vol-% dioxane were measured by the conductometric method previously described [7].

The rate constants of **1b** in buffered 50 vol-% dioxane were measured with a recording *Beckman* DB UV. spectrophotometer equipped with a thermostated $(\pm 0.1^{\circ})$ 1 cm quartz cell. To the cell were added equal volumes of a 10^{-4} M solution of **1b** hydrotosylate in dry dioxane and an aqueous buffer solution prepared by diluting one part of buffer solution (*Merck Titrisol*) with 24 parts of water and adjusting the pH with NaOH or HCl. Before and during the reaction the p^H_H of the reaction media were checked with a *Metrohm* E 350 pH-meter and a glass electrode (pH 0–13). Maximum deviation during a run ± 0.1 pH unit.

Between $p_{\rm H}^{\rm H}$ 3.8 and 13.0 reactions were followed by recording the extinction at 290 nm, between $p_{\rm H}^{\rm H}$ 0.2 and 2.3 at 250 nm (Fig. 1 and 2). Rate constants were calculated from the recorded extinction-time plot by the method of *Rosevear* [11].

UV. -spectroscopic product analyses. – Equal volumes of a 10^{-3} M solution of 1b hydrotosylate in dry dioxane and an aqueous buffer solution (adjusted to the appropriate $p_{\rm H}^{*}$) were mixed and allowed to stand at 25° for 30 min. The relative amounts of *p*-aminoacetophenone (**3b**) and *p*-aminophenylacetylene (**5a**) formed were determined by measuring the extinctions at 316 nm and 268 nm (Fig. 1). Since *p*-toluenesulfonic acid also absorbs at 268 nm (but not at 316 nm) the corrected extinction E^{268} was obtained from the observed total extinction $E^{268}_{\rm obs}$ by subtraction of the contribution by the acid, *i.e.*

$$E^{268} = E^{268}_{obs} - \varepsilon^{268}_{TsOH} \times c \times d,$$

where ϵ_{180H}^{268} is the molar extinction coefficient of *p*-toluenesulfonic acid in 50% dioxane, which is 600 at 268 nm.

From the values of E^{268} and E^{316} the ratio of the concentrations of ketone **3b** and acetylene **5a**, $c_{\rm K}$ and $c_{\rm A}$ respectively, were calculated with the following equation:

$$c_{\mathbf{K}}/c_{\mathbf{A}} = rac{E^{316} imes \epsilon_{\mathbf{A}}^{268} - E^{268} imes \epsilon_{\mathbf{A}}^{316}}{E^{268} imes \epsilon_{\mathbf{K}}^{316} - E^{316} imes \epsilon_{\mathbf{K}}^{268}},$$

where $\varepsilon_{\rm K}$ and $\varepsilon_{\rm A}$ are the molar extinction coefficients of the ketone **3b** and the acetylene **5a**, respectively, at 268 and 316 nm, the experimental values in 50 vol-% dioxane being (Fig. 1):

$$\varepsilon_{\rm K}^{316} = 21,000; \ \varepsilon_{\rm K}^{268} = 4000; \ \varepsilon_{\rm A}^{268} = 21,800; \ \varepsilon_{\rm A}^{316} = 1000.$$

Elemental analyses were carried out by Mr. E. Thommen; the NMR. spectra were measured by Mr. K. Aegerter.

BIBLIOGRAPHY

- [1] C. A. Grob & G. Cseh, Helv. 47, 194 (1964).
- [2] W. M. Schubert & G. W. Barfknecht, J. Amer. chem. Soc. 92, 207 (1970).
- [3] M. Hanack, Accounts of Chemical Research 3, 209 (1970); Z. Rappoport, T. Bässler & M. Hanack, J. Amer. chem. Soc. 92, 4985 (1970).
- [4] C. A. Grob, Chimia 25, 87 (1971).
- [5] K. B. Wiberg, Chem. Reviews 55, 713 (1955).
- [6] D. S. Noyce, M. A. Matesich, M. D. Schiavelli & P. E. Peterson, J. Amer. chem. Soc. 87, 2295 (1965); W. M. Schubert, B. Lamm & J. R. Keeffe, ibid. 86, 4727 (1964).
- [7] C. A. Grob & R. Spaar, Helv. 53, 2119 (1970).
- [8] U. B. Drewsen, Liebigs Ann. Chem. 212, 158 (1882).
- [9] A. Burawoy & J. P. Critchley, Tetrahedron 5, 351 (1959).
- [10] L.C. Raiford & H.L. Davis, Proc. Iowa Acad. Sci. 32, 324 (1925) [Chem. Abstr. 21, 905 (1927)].
- [11] W. E. Rosevear, J. Amer. chem. Soc. 53, 1651 (1931).